SN54HC4040, SN74HC4040 12-BIT ASYNCHRONOUS BINARY COUNTERS SCLS160D - DECEMBER 1982 - REVISED SEPTEMBER 2003 - Wide Operating Voltage Range of 2 V to 6 V - Outputs Can Drive Up To 10 LSTTL Loads - Low Power Consumption, 80-μA Max I_{CC} SN54HC4040 . . . J OR W PACKAGE SN74HC4040 . . . D, DB, N, NS, OR PW PACKAGE (TOP VIEW) - Typical t_{pd} = 12 ns - ±4-mA Output Drive at 5 V - Low Input Current of 1 μA Max SN54HC4040 . . . FK PACKAGE (TOP VIEW) NC - No internal connection ### description/ordering information The 'HC4040 devices are 12-stage asynchronous binary counters, with the outputs of all stages available externally. A high level at the clear (CLR) input asynchronously clears the counter and resets all outputs low. The count is advanced on a high-to-low transition at the clock (CLK) input. Applications include time-delay circuits, counter controls, and frequency-dividing circuits. #### **ORDERING INFORMATION** | TA | PACKAGE [†] | PACKAGE [†] | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING | | |----------------|----------------------|----------------------|--------------------------|---------------------|--| | | PDIP – N | Tube of 25 | SN74HC4040N | SN74HC4040N | | | | | Tube of 40 | SN74HC4040D | | | | | SOIC - D | Reel of 2500 | SN74HC4040DR | HC4040 | | | | | Reel of 250 | SN74HC4040DT | | | | -40°C to 85°C | SOP - NS | Reel of 2000 | SN74HC4040NSR | HC4040 | | | | SSOP - DB | Reel of 2000 | SN74HC4040DBR | HC4040 | | | | | Tube of 90 | SN74HC4040PW | | | | | TSSOP - PW | Reel of 2000 | SN74HC4040PWR | HC4040 | | | | | Reel of 250 | SN74HC4040PWT | | | | | CDIP – J | Tube of 25 | SNJ54HC4040J | SNJ54HC4040J | | | -55°C to 125°C | CFP – W | Tube of 150 | SNJ54HC4040W | SNJ54HC4040W | | | | LCCC – FK | Tube of 55 | SNJ54HC4040FK | SNJ54HC4040FK | | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. # FUNCTION TABLE (each buffer) | IN | PUTS | FUNCTION | | | | | | |--------------|------|-----------------------|--|--|--|--|--| | CLK | CLR | FUNCTION | | | | | | | 1 | L | No change | | | | | | | \downarrow | L | Advance to next stage | | | | | | | Х | Н | All outputs L | | | | | | ### logic diagram (positive logic) Pin numbers shown are for the D, DB, J, N, NS, PW, and W packages. # absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V _{CC} –0.5 V | to 7 V | |--|--------| | Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) (see Note 1) ± 2 | 20 mA | | Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) (see Note 1) | 20 mA | | Continuous output current, I_O ($V_O = 0$ to V_{CC}) ± 2 | 25 mA | | Continuous current through V _{CC} or GND ±5 | | | Package thermal impedance, θ_{JA} (see Note 2): D package | 3°C/W | | DB package 82 | 2°C/W | | N package | 7°C/W | | NS package 64 | 4°C/W | | PW package 108 | 8°C/W | | Storage temperature range, T _{stq} –65°C to | 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. - 2. The package thermal impedance is calculated in accordance with JESD 51-7. ### recommended operating conditions (see Note 3) | | | | SN | SN54HC4040 | | SN | 74HC40 | 40 | LINUT | | |--|---------------------------------|-------------------------|-----|------------|------|-----|--------|------|-------|--| | | | | MIN | NOM | MAX | MIN | NOM | MAX | UNIT | | | VCC | Supply voltage | | 2 | 5 | 6 | 2 | 5 | 6 | V | | | | | V _{CC} = 2 V | 1.5 | | | 1.5 | | | | | | V _{IH} High-level input voltage | V _{CC} = 4.5 V | 3.15 | | | 3.15 | | | V | | | | | V _{CC} = 6 V | 4.2 | | | 4.2 | | | | | | | | | V _{CC} = 2 V | | | 0.5 | | | 0.5 | | | | ٧ _{IL} | ow-level input voltage | V _{CC} = 4.5 V | | | 1.35 | | | 1.35 | V | | | | | VCC = 6 V | | | 1.8 | | | 1.8 | | | | ٧ _I | Input voltage | | 0 | | VCC | 0 | | VCC | V | | | ٧o | Output voltage | | 0 | | VCC | 0 | | VCC | V | | | | | V _{CC} = 2 V | | | 1000 | | | 1000 | | | | Δt/Δv† | Input transition rise/fall time | V _{CC} = 4.5 V | | | 500 | | | 500 | ns | | | | | VCC = 6 V | | | 400 | | | 400 | | | | TA | Operating free-air temperature | | -55 | | 125 | -40 | | 85 | °C | | This device is used in the threshold region (from V_{IL} max = 0.5 V to V_{IH} min = 1.5 V), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at t_t = 1000 ns and V_{CC} = 2 V does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes. # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | DADAMETED | TEOT 0.0 | NOTIONS | v _{cc} | Т | A = 25°C | ; | SN54H | C4040 | SN74HC4040 | | LINUT | |-----------|----------------------|----------------------------|-----------------|------|----------|------|-------|-------|------------|-------|-------| | PARAMETER | TEST CC | TEST CONDITIONS | | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNIT | | | | | 2 V | 1.9 | 1.998 | | 1.9 | | 1.9 | | | | | | $I_{OH} = -20 \mu A$ | 4.5 V | 4.4 | 4.499 | | 4.4 | | 4.4 | | | | Voн | VI = VIH or VIL | | 6 V | 5.9 | 5.999 | | 5.9 | | 5.9 | | V | | | | $I_{OH} = -4 \text{ mA}$ | 4.5 V | 3.98 | 4.3 | | 3.7 | | 3.84 | | | | | | $I_{OH} = -5.2 \text{ mA}$ | 6 V | 5.48 | 5.8 | | 5.2 | | 5.34 | | | | | VI = VIH or VIL | | 2 V | | 0.002 | 0.1 | | 0.1 | | 0.1 | | | | | I _{OL} = 20 μA | 4.5 V | | 0.001 | 0.1 | | 0.1 | | 0.1 | | | VOL | | | 6 V | | 0.001 | 0.1 | | 0.1 | | 0.1 | V | | | | I _{OL} = 4 mA | 4.5 V | | 0.17 | 0.26 | | 0.4 | | 0.33 | | | | | $I_{OL} = 5.2 \text{ mA}$ | 6 V | | 0.15 | 0.26 | | 0.4 | | 0.33 | | | lį | $V_I = V_{CC}$ or 0 | | 6 V | | ±0.1 | ±100 | | ±1000 | | ±1000 | nA | | Icc | $V_I = V_{CC}$ or 0, | IO = 0 | 6 V | | | 8 | | 160 | | 80 | μΑ | | Ci | | | 2 V to 6 V | | 3 | 10 | | 10 | | 10 | pF | NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. ### SN54HC4040, SN74HC4040 12-BIT ASYNCHRONOUS BINARY COUNTERS SCLS160D - DECEMBER 1982 - REVISED SEPTEMBER 2003 # timing requirements over recommended operating free-air temperature range (unless otherwise noted) | | | | \ ,, | T _A = 2 | 25°C | SN54H | C4040 | SN74H | C4040 | | |--|-----------------|-----------------|-------|--------------------|------|-------|-------|-------|-------|------| | | | | VCC | MIN | MAX | MIN | MAX | MIN | MAX | UNIT | | | | | 2 V | | 5.5 | | 3.7 | | 4.3 | | | fclock | Clock frequency | | 4.5 V | | 28 | | 19 | | 22 | MHz | | | | 6 V | | 33 | | 22 | | 25 | | | | | | 2 V | 90 | | 135 | | 115 | | | | | | | CLK high or low | 4.5 V | 18 | | 27 | | 23 | | | | ١. | Dulan donation | | 6 V | 15 | | 23 | | 20 | | | | t _W | Pulse duration | | 2 V | 70 | | 105 | | 90 | | ns | | | | CLR high | 4.5 V | 14 | | 21 | | 18 | | | | | | | 6 V | 12 | | 18 | | 15 | | | | | · | | | 60 | | 90 | | 75 | | ns | | t _{Su} Setup time, CLR inactive before CLK↓ | | 4.5 V | 12 | | 18 | | 15 | | | | | | | | 6 V | 10 | | 15 | | 13 | | | # switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1) | 545445 | FROM | то | ., | T | λ = 25°C | ; | SN54HC4040 | | SN74HC4040 | | | |------------------|---------|----------------|-------|-----|----------|-----|------------|-----|------------|-----|------| | PARAMETER | (INPUT) | (OUTPUT) | VCC | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNIT | | | | | 2 V | 5.5 | 10 | | 3.7 | | 4.3 | | | | f _{max} | | | 4.5 V | 28 | 45 | | 19 | | 22 | | MHz | | | | | 6 V | 33 | 53 | | 22 | | 25 | | | | | | | 2 V | | 62 | 150 | | 225 | | 190 | | | ^t pd | CLK | Q _A | 4.5 V | | 16 | 30 | | 45 | | 38 | ns | | · | | | 6 V | | 12 | 26 | | 38 | | 32 | | | | | | 2 V | | 63 | 140 | | 210 | | 175 | | | ^t PHL | CLR | Any | 4.5 V | | 17 | 28 | | 42 | | 35 | ns | | | | | 6 V | | 13 | 24 | | 36 | | 30 | | | t _t | | Any | 2 V | | 28 | 75 | | 110 | | 95 | ns | | | | | 4.5 V | | 8 | 15 | | 22 | | 19 | | | | | | 6 V | | 6 | 13 | | 19 | | 16 | | ## operating characteristics, $T_A = 25^{\circ}C$ | | PARAMETER | TEST CONDITIONS | TYP | UNIT | |-----------------|-------------------------------|-----------------|-----|------| | C _{pd} | Power dissipation capacitance | No load | 88 | pF | #### PARAMETER MEASUREMENT INFORMATION NOTES: A. C_I includes probe and test-fixture capacitance. - B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \ \Omega$, $t_f = 6 \ ns$, $t_f = 6 \ ns$. - C. For clock inputs, f_{max} is measured when the input duty cycle is 50%. - D. The outputs are measured one at a time with one input transition per measurement. - E. tpLH and tpHL are the same as tpd. Figure 1. Load Circuit and Voltage Waveforms ### **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | e Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------| | 85004012A | ACTIVE | LCCC | FK | 20 | 1 | TBD | POST-PLATE | N / A for Pkg Type | | 8500401EA | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 SNPB | N / A for Pkg Type | | 8500401FA | ACTIVE | CFP | W | 16 | 1 | TBD | A42 | N / A for Pkg Type | | SN54HC4040J | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 SNPB | N / A for Pkg Type | | SN74HC4040D | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74HC4040DBLE | OBSOLETE | SSOP | DB | 16 | | TBD | Call TI | Call TI | | SN74HC4040DBR | ACTIVE | SSOP | DB | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74HC4040DBRE4 | ACTIVE | SSOP | DB | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74HC4040DE4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74HC4040DG4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74HC4040DR | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74HC4040DRE4 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74HC4040DRG4 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74HC4040DT | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74HC4040DTE4 | ACTIVE | SOIC | D | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74HC4040DWR | OBSOLETE | SOIC | DW | 16 | | TBD | Call TI | Call TI | | SN74HC4040N | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | SN74HC4040N3 | OBSOLETE | PDIP | N | 16 | | TBD | Call TI | Call TI | | SN74HC4040NE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | SN74HC4040NSR | ACTIVE | SO | NS | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74HC4040NSRE4 | ACTIVE | SO | NS | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74HC4040PW | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74HC4040PWE4 | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74HC4040PWLE | OBSOLETE | TSSOP | PW | 16 | | TBD | Call TI | Call TI | | SN74HC4040PWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74HC4040PWRE4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74HC4040PWT | ACTIVE | TSSOP | PW | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | SN74HC4040PWTE4 | ACTIVE | TSSOP | PW | 16 | 250 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | #### PACKAGE OPTION ADDENDUM 6-Dec-2006 | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | Eco Plan (2) | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |------------------|-----------------------|-----------------|--------------------|------|----------------|--------------|------------------|------------------------------| | SNJ54HC4040FK | ACTIVE | LCCC | FK | 20 | 1 | TBD | POST-PLATE | N / A for Pkg Type | | SNJ54HC4040J | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 SNPB | N / A for Pkg Type | | SNJ54HC4040W | ACTIVE | CFP | W | 16 | 1 | TBD | A42 | N / A for Pkg Type | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### 14 LEADS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. # W (R-GDFP-F16) ## CERAMIC DUAL FLATPACK - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package can be hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only. - E. Falls within MIL STD 1835 GDFP1-F16 and JEDEC MO-092AC #### FK (S-CQCC-N**) #### **28 TERMINAL SHOWN** #### **LEADLESS CERAMIC CHIP CARRIER** NOTES: A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package can be hermetically sealed with a metal lid. - D. The terminals are gold plated. - E. Falls within JEDEC MS-004 # N (R-PDIP-T**) ### PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. # D (R-PDSO-G16) ## PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end. - Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side. - E. Reference JEDEC MS-012 variation AC. # DW (R-PDSO-G16) ## PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 variation AA. ### **MECHANICAL DATA** ### NS (R-PDSO-G**) # 14-PINS SHOWN ### PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. ### DB (R-PDSO-G**) ### PLASTIC SMALL-OUTLINE #### **28 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150 ### PW (R-PDSO-G**) #### 14 PINS SHOWN ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | | Applications | | |------------------------|---|---| | amplifier.ti.com | Audio | www.ti.com/audio | | dataconverter.ti.com | Automotive | www.ti.com/automotive | | dsp.ti.com | Broadband | www.ti.com/broadband | | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | logic.ti.com | Military | www.ti.com/military | | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | microcontroller.ti.com | Security | www.ti.com/security | | www.ti.com/lpw | Telephony | www.ti.com/telephony | | | Video & Imaging | www.ti.com/video | | | Wireless | www.ti.com/wireless | | | dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com | amplifier.ti.com dataconverter.ti.com dsp.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti.com/lpw Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2006, Texas Instruments Incorporated